Летающий «Фрегат»: грузовой дрон для российской армии

Создатели беспилотников для российской армии разрабатывают гражданский грузовой дрон с вертикальным взлетом и посадкой.
Летающий «Фрегат»: грузовой дрон для российской армии

Летать – это легко. Упрощая, полет можно свести к действию всего четырех ключевых векторов, сбалансированных в общем центре масс. Это сила тяжести и противостоящая ей подъемная сила плюс направленная вперед тяга, которой препятствует сопротивление воздуха. К этим четырем векторам приложены и все усилия конструкторов, двигателистов и аэродинамиков, которые стремятся минимизировать массу и сопротивление летательных аппаратов, увеличить тягу и подъемную силу, чтобы добиться стабильного и экономичного полета. Например, уменьшение веса на процент позволяет на 0,75% снизить потребление топлива.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Но не менее важен и способ создания подъемной силы. В самолетах она возникает за счет движения вперед, заставляющего воздух быстро обтекать неподвижное крыло. Двигатели генерируют лишь тягу, а подъем обеспечивается аэродинамическим профилем, благодаря которому над крылом возникает область пониженного давления – и сила, направленная вверх. Недаром некоторые легкие планеры могут подолгу оставаться в полете, выключив двигатель и вообще не используя топливо. А вот вертолету подъемную силу создают потоки воздуха вокруг лопастей вращающегося без остановки ротора, и они же обеспечивают тягу вперед. Поэтому вертолет – это всегда компромисс.

Самолеты – хорошо

В пересчете на доставку одного человека на расстояние 100 км классические легкомоторные самолеты Tecnam P92 расходуют 4,6 л топлива, более современные Tecnam P2002 – еще на литр меньше. Близкие цифры демонстрируют и большие пассажирские авиалайнеры. Для сравнения: популярные коммерческие вертолеты Sikorsky S-76 Spirit потребуют на это уже 11,9 л горючего. С точки зрения эффективности и экономичности полета самолеты – хорошо, а вот вертолеты – не очень.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Даже их максимальная скорость ограничена величиной, при которой кончики лопастей начинают двигаться быстрее звука, и она вряд ли когда-нибудь превысит 350–400 км/ч. Добавьте к этому высокий расход топлива, и вы поймете, что самолетной дальности полета вертолетам не добиться никогда. Выполняя операции где-нибудь в Арктике или в Сибири, вертолетчики вынуждены предварительно готовить запасы топлива в определенных точках вдоль своего маршрута: практическая дальность их полета без дозаправки редко превышает 500 км. Однако почти все это искупает одна деталь – инфраструктура.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Самолеты требуют сложных инженерных сооружений и длинных взлетно-посадочных полос, которые необходимо поддерживать в рабочем состоянии. Вертолеты летают где захотят, могут зависать неподвижно, перемещаться боком, а главное, они способны подняться в воздух с неподготовленной площадки – с любой лужайки, полярной льдины или крыши небоскреба. Недаром авиаконструкторы, двигателисты и аэродинамики с таким упорством преследуют идею создания летательных аппаратов с фиксированным крылом и возможностью вертикального взлета и посадки (СВВП).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Есть варианты

Первые практические попытки разработки таких самолетов начались еще в конце 1940-х, и надежды с ними тогда связывались огромные, тем более что и направления работы в целом были понятны уже тогда. Для перехода из вертикального полета в горизонтальный и обратно требуется контролируемо менять направление вектора тяги. Для этого мы можем менять положение всего фюзеляжа – как в аэродинамической схеме «тейлситтер», по которой был создан, например, экспериментальный СВВП Lockheed XFV-1, приземлявшийся на хвост, для устойчивости оснащенный дополнительным перпендикулярным оперением. Другие варианты подразумевают использование поворотных крыльев либо только двигателей, как у конвертопланов Bell V-22 Osprey, единственных таких аппаратов, пошедших в серийное производство. Наконец, отклоняться могут одни винты (такой вариант был реализован на экспериментальном Bell X-22, поднявшемся в воздух в 1966 году), а на аппаратах с реактивным двигателем – направление вылетающей из сопла струи (как у незавершенного проекта СВВП Як-141). Вершиной развития этих технологий можно назвать систему Rolls-Royce LiftSystem, которая разработана для палубной версии боевых F-35 Lightning II.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Однако эпоха громких проектов гражданских СВВП закончилась еще в 1970-х, и в результате такие аппараты достались лишь военным. Оказалось, что сложность конструкции оборачивается снижением надежности, а «компромиссная» двигательная система – высоким расходом топлива. Кроме того, переход от вертикального полета и зависания в горизонтальный крайне требователен к навыкам пилота, которому приходится контролировать вектор тяги, скоординированно управляя и двигателем, и элементами механизации. Ситуация стала меняться лишь в последние годы, благодаря тем же технологиям, которые стали драйверами «беспилотной революции».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Революция дронов

«Еще с 1940-х годов идея вертикального взлета остается "святым Граалем" авиационной науки и техники, – рассказал нам начальник центра перспективных исследований группы "Кронштадт" Владимир Воронов. – Сейчас эта старая тема снова всплыла – и это происходит повсеместно, по всему миру, – благодаря новым возможностям автоматизации управления. Вычислительные мощности на борту позволяют передать компьютеру все операции, в том числе при взлете и посадке и при переходе между разными режимами полета».

Группа «Кронштадт» – один из лидеров российской индустрии беспилотных авиационных систем. Начав разработки с аппарата легкого класса взлетной массой 50 кг, компания расширила свои компетенции и в область тяжелых беспилотных аппаратов. Это направление в «Кронштадте» возглавляет заслуженный конструктор РФ, доктор технических наук Николай Долженков. Под его руководством создан разведывательный дрон «Орион-Э», проходящий сейчас летные испытания.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Ему же принадлежит идея создания СВВП «Фрегат» для воздушной разведки и целеуказания для кораблей военно-морского флота. Такой аппарат способен базироваться не только на авианосце, но и на любом судне, на котором можно разместить стандартную вертолетную площадку. Однако не менее перспективным беспилотник выглядит и для гражданской авиации, особенно в России с ее огромными расстояниями и неразвитой сетью аэродромов. До сих пор многие районы страны остаются слишком удаленными для доставки вертолетами, но и слишком мало освоенными для строительства самолетных аэродромов. Поэтому нам так нужен новый СВВП.

Фрегат
widget-interest

Взлетная масса: 5000 кг

Полезная нагрузка: 800 кг

Размах крыла: 17 м

Сложенное крыло: 9 м

Длина: 13 м

Высота: 3,7 м

Дальность полета: 2300 км

Продолжительность полета: 4,3 ч.

Практический потолок: 7000 м

Летная модель

«Фрегат» использует пару поворотных вентиляторов, на которые передается усилие от двигателя, а для повышения устойчивости при взлете, посадке и зависании – дополнительный поворотный импеллер, скрытый в хвостовой части фюзеляжа. Как мы помним, силы, действующие на летательный аппарат, должны иметь общую точку приложения в центре его масс. Некоторые конструкторы СВВП решают эту проблему, размещая винты непосредственно внутри крыла, как это сделано на экспериментальном AgustaWestland Project Zero. Однако создатели «Фрегата» нашли другую подходящую аэродинамическую схему, с тандемным крылом, которое обеспечивает необходимую для самолетного полета площадь крыла и правильную «развесовку» аппарата.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В отличие от конвертопланов, «Фрегат» сможет взлетать и «по-самолетному», дополнительно экономя топливо. Впрочем, пока что это лишь ожидания разработчиков, и многое в проекте остается незавершенным. «Вот, например, кольца, в которые заключены винты, – объясняет Владимир Воронов. – При вертикальном полете они создают дополнительную подъемную силу, зато при горизонтальном, наоборот, увеличивают сопротивление. Компромисс еще предстоит найти». В самом деле, пока разработчиками выполнен лишь цикл предпроектных исследований, построена и успешно испытана на разных режимах летная модель. «Вообще это задача дорогая и длинная, – признается Владимир Воронов. – В частности, в испытанной модели использовался электродвигатель. Однако мощности любого существующего на сегодня электродвигателя реальному тяжелому самолету будет недостаточно. Поэтому прежде всего требуется провести работы по оценке и выбору силовой установки с учетом конкретного двигателя, размеров вентиляторов и так далее. Это позволит получить обоснованные характеристики аппарата, оценить возможности коммерческого использования, построить экспериментальные версии, а затем и перейти в серию».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Новая почта

Снизить издержки позволит активное применение компонентов и технологий, уже апробированных на армейских беспилотниках «Орион-Э», включая наземные системы управления и уникальную для России линию производства тонкостенных длинномерных композитных деталей, позволяющих уменьшить массу аппарата. Разработчики считают, что, если «Фрегат» получит нужную поддержку, работа над ним потребует от 6 до 8 лет. Надежда на это есть: не так давно проект был представлен Министерству промышленности и торговли. Но создатели дрона смотрят еще дальше. Сами такие перспективные беспилотники могут стать элементом намного более масштабной системы роботизированной доставки грузов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Беспилотная авиационная транспортная сеть сможет использовать аппараты совершенно разных классов, от обычных грузовых самолетов до небольших мультикоптеров, для доставки если не «до двери», то до любого отдаленного и труднодоступного пункта, которых в России до сих пор предостаточно. Первоначально она может частично полагаться на обычные пилотируемые самолеты, но постепенно все большую часть работы начнут брать на себя автоматизированные системы управления и грузовые дроны, большие, малые и средние. Включая новенькие летающие «Фрегаты».