Новые пиксели для супермониторов: Новый дизайн пикселя
Технология LCD в настоящее время занимают более половины рынка телевизионной бытовой техники. Подавляющее число компьютерных мониторов и дисплеев сотовых телефонов также производятся на основе жидких кристаллов. Но есть три причины, по которым они не могут создавать еще более естественное и насыщенное изображение. Во-первых. Первичные элементы картинки — пиксели — в них не отключаются полностью. Во-вторых, для переключения с белого цвета на черный пикселю требуется от 25 до 40 миллисекунд, что приводит к смазыванию быстро меняющейся картинки. В-третьих, большинство LCD дисплеев неэффективны при ярком естественном освещении. «Ничего выдающегося в технологии LCD нет. Единственная причина их господства на рынке — дешевизна», — говорит Шрирам Прерувемба, вице-президент компании E Ink, являющейся лидером технологии электронной «газетной бумаги».
Пиксели с новым телескопическим дизайном способны полностью переключаться с белого цвета на черный в течение всего 1,5 миллисекунды. По словам Майкла Синклера из Microsoft Research, именно их быстродействие позволит создавать дешевые цветные дисплеи на их основе. В обычном LCD дисплее каждый отдельный пиксель состоит из трех субпикселей -красного, зеленого и голубого, которые при разной интенсивности свечения создают определенный цвет точки. Каждый субпиксель управляется отдельным транзистором, входящим в состав микросхемы, управляющей целым пикселем. Это довольно сложная и громоздкая структура. Пиксели телескопического дизайна не требуют столь сложной схемы управления. Кроме того, они на порядок ярче обычных, которые пропускают лишь 5−10 процентов света. Столь большие потери обусловлены последовательным прохождением света через поляризационную пленку, жидкокристаллический слой и светофильтры. На каждом этапе свет теряет часть своей интенсивности. Телескопические пиксели, напротив, пропускают через себя 36% света. Благодаря этому можно добиться высокого качества картинки при ярком естественном освещении и значительно снизить энергопотребление экрана.
Новые пиксели состоят из двух микрозеркал. Первое представляет из себя алюминиевый диск диаметром 100 микрон и толщиной всего 100 нанометров с отверстием в центре. Второе зеркало также сделано из алюминиевой пленки, но его диаметр равен диаметру отверстия в центре первого и оно расположено прямо напротив него. Позади маленького зеркала находится управляющий прозрачный электрод. Пучок света направляется из-за маленького диска на внешний. В неактивном состоянии оба зеркала пикселя попросту перекрывают поток света. Когда на электрод подается напряжение, то диск с отверстием изгибается, и схема начинает работать как телескоп-рефлектор (отсюда и название): свет падает на большое зеркало, отражается на малое, а затем проходит через отверстие. Для изготовления прозрачных электродов применяется композиция оксидов индия и титана. Но Синклер и его коллеги намерены попробовать сделать электрод из тончайшей алюминиевой пленки. Если попытка окажется успешной, то цена каждого пикселя будет серьезно снижена, а сам процесс изготовления станет намного проще.
По мнению Шрирама Прерувембы телескопические пиксели имеют очень серьезные преимущества над традиционными LCD пикселями, но у них есть и слабое место. А именно — они по сути представляют собой микроскопические механизмы. «В большинстве приборов первое, что выходит из строя — это механические движущиеся элементы» — говорит Прерувемба. Но Синклер и его коллеги уверены, что дисплеи на основе телескопических пикселей будут очень надежны благодаря высокой эластичности исходных материалов. Коллектив исследователей Microsoft Research намерен осуществить мечту компьютерщиков и создать, наконец, огромные, яркие и дешевые настенные мониторы, диагональ которых измеряется не дюймами, а футами.
По информации Technology Review