Выход из плоского тупика: Схемотехника в пространстве
Еще в 1965 г., когда микроэлектроника делала свои первые шаги, будущий руководитель компании Intel Гордон Мур сформулировал свой знаменитый эмпирический закон, согласно которому число транзисторов на кристалле удваивается каждые 2 года. Самое удивительное — что Мур сумел предсказать развитие отрасли на десятилетия вперед. Он утверждал, что производительность компьютеров будет расти в геометрической прогрессии, а сами микросхемы будут стремительно дешеветь за счет все бóльших объемов производства.
С некоторыми оговорками закон Мура работает и по сей день: количество транзисторов в микросхемах удваивается каждые 1,5 года. Однако рост вычислительной мощности в скором времени может остановиться, если не будет сделан очередной технологический скачок. Дело в том, что увеличение количества транзисторов на кристалле достигается за счет уменьшения их размеров. Между тем размеры элементов нельзя уменьшать до бесконечности — существует определенный теоретический предел (порядка 9 мкм для отдельного транзистора), после которого полупроводниковые приборы перестают надежно работать. Производители микросхем почти вплотную подошли к этому пределу.
Один из вариантов решения проблемы заключается в переходе к трехмерным интегральным схемам. В современных электронных чипах все логические элементы находятся на поверхности кристалла, формируя один-единственный слой. При достижении предела миниатюризации отдельных логических элементов дальнейший рост производительности возможен только за счет увеличения площади (и расстояния между отдельными элементами). Переход к многослойным, объемным схемам позволил бы остаться в прежних размерах; вся беда в том, что производители электроники не умеют делать многослойные микрочипы.
Компания IBM Research заявила о том, что ей удалось совершить значительный прорыв в этом направлении. Ее специалисты разработали «вафельную» технологию изготовления объемных интегральных схем. Сперва на тонких кремниевых пластинах формируются слои с логическими элементами. Готовые слои накладываются друг на друга, после чего в них проделываются миниатюрные сквозные отверстия, в которые заливается специальный проводящий сплав. Эти проводниковые перемычки соединяют слои в строго определенных местах, превращая отдельные их в единую интегральную схему. Таким образом достигается значительное уменьшение размеров вычислительного устройства, а также увеличение его производительности за счет быстрого обмена сигналами между различными слоями схемы.
К сожалению, о создании полноценных многослойных микросхем речи пока не идет — скорее можно говорить о разработке новой технологии изготовления многослойных плат. Однако сам подход представляется весьма перспективным. Для достижения действительно революционного результата инженерам IBM осталось «всего ничего»: нужно лишь значительно увеличить точность и миниатюрность связывающих элементов. Или придумать что-нибудь получше.
Читайте еще о прошлом компьютеров: «Патриархи компьютерного века» и об их будущем: «Память переключателей», «Мозг на чипе», «Ионный ветер».
По информации Physorg.Com