Смогут ли роботы обрести душу: эмоциональный ИИ
Сакральное против познания
В обывательском представлении искусственный интеллект никогда не сможет приблизиться к человеческой эмоциональности из-за нашей особой душевной организации, которую невозможно трансплантировать в машину. Однако сложности с созданием эмоционального ИИ, напротив, связаны с тем, что люди не так уж хороши в эмпатии. Мы совсем не похожи на идеальные эмоциональные машины, которые могут с легкостью расшифровать чувства окружающих. Наша эмпатия серьезно ограничена уникальным опытом, усваиваемыми стереотипами и индивидуальными психоэмоциональными реакциями. Так, европеец из среднего класса вряд ли поймет, какие чувства выражает вождь африканского племени, и наоборот.
С одной стороны, мы полагаем, что эмоциональность — сакральный дар, исключительная привилегия людей. С другой — знаем о ней слишком мало, рассказывает специалист по ИИ и машинному обучению и основатель портала 22century.ru Сергей Марков. По его мнению, отказ от восприятия эмоциональности как чего-то священного позволит найти новые методы для изучения эмпатии. С помощью обратной разработки (исследование готового устройства или программы с целью понять принцип его работы и обнаружить неочевидные возможности) исследования нейронных сетей и машинного обучения можно узнать что-то принципиально новое о человеческой эмоциональности. «Машинное обучение позволяет в ряде случаев, что называется, поверить гармонию алгеброй — на смену догадкам и гипотезам приходит более надежное знание, основанное на статистике больших данных», — полагает Марков.
Наладить коммуникацию
Возможно, мы бы и не пытались научить машины эмпатии просто из любопытства, но растущее число автоматизированных систем (от голосовых помощников до самоуправляемых автомобилей) делает эмоциональный ИИ насущной необходимостью. Главная задача, которая стоит перед специалистами по машинному обучению, — упростить работу с разными интерфейсами и на уровне ввода, и в процессе вывода информации. Частота общения с компьютерами очевидно растет, но сами сервисы и системы пока не понимают, почему мы трясем телефоном: от злобы или от смеха.
Эмоциональный интеллект уже сейчас востребован во многих бизнес-проектах. От рекламы, которая, подстраиваясь под эмоциональное состояние потенциального клиента, увеличивает продажи, до технологий распознавания, которые, обнаружив самого нервного человека в толпе, помогут поймать преступника.
Исследователям предстоит поработать с эмоциональным интеллектом и из соображений безопасности. «Решения, которые принимаются компьютерами, не должны казаться психопатическими. Если машина действует в мире, где живут люди, она должна уметь принимать во внимание "человеческие обстоятельства", то есть быть способной к эмпатии. Стандартный пример: робот-диагност, отправляющий пожилого человека на сложную операцию, должен учитывать риски, связанные со стрессом. Беспилотный автомобиль, начисто лишенный эмпатии, в определенном контексте тоже может натворить бед», — считает философ Кирилл Мартынов.
Алармисты вроде философа и специалиста по антропоцену Ника Бострома, отмечает Мартынов, утверждают, что проблема «потери чувствительности» у сверхразума, резко выделяющегося на фоне человеческого уровня, вполне реальна. Эту проблему пытаются предотвратить уже сейчас при помощи юридических ограничений. При таком подходе создателей ИИ законодательно обяжут наделять разработки элементами эмоционального разума, необходимыми для эмпатии.
Научить эмоциям
Нетривиальная задача создания эмоционального ИИ упрощается с появлением новых инструментов вроде машинного обучения. Сергей Марков описывает этот процесс следующим образом: «Можно взять несколько сотен тысяч аудиозаписей человеческих высказываний и попросить группу людей-разметчиков сопоставить с каждой из этих фраз набор маркеров "эмоционального алфавита". Затем случайным образом отбираются 80% фраз — на этой выборке нейросеть обучают угадывать эмоциональные маркеры. Оставшиеся 20% можно использовать, чтобы убедиться в исправной работе искусственного интеллекта». В другой модели обучения, которую описывает Марков, нейросеть получает бо́льшую самостоятельность. В ней ИИ сам категоризирует фразы по схожей эмоциональной окраске, темпу речи и интонации, а позже учится синтезировать свои высказывания на основе полученных категорий. Так или иначе, главным ресурсом для обучения искусственного интеллекта становятся большие массивы данных.
Эволюционная гонка
«Тот факт, что мы переживаем наши собственные эмоции как "настоящие", связан лишь с тем, что так настроена наша когнитивная система, возникшая в ходе эволюции. Особи, способные испытывать эмоции и контролировать свое поведение, получали преимущество в эволюционной гонке. Компьютеры вряд ли смогут приблизиться к моделированию реальной эволюции приматов — в этом смысле их эмоции не будут "реальными"», — полагает Мартынов.
Ключевой вопрос, говорит Мартынов: можно ли смоделировать субъективные переживания эмоций, то, что Аристотель назвал бы душой, а Декарт — cogito? Прямого ответа на этот вопрос наука до сих пор не дает, а философы собирают конференции о природе квалиа (нередуцируемых элементов субъективного опыта). Хотя есть и оптимисты вроде философа и когнитивиста Дэниела Деннета, которые утверждают, что в конечном счете субъективный опыт — это способность рассказывать себе и окружающим о том, что вы почувствовали. Убедительные вербальные отчеты об эмоциях мы, конечно, получим от машин в ближайшее время, думает Мартынов.
Но с большой вероятностью, полагает Сергей Марков, наше совместное будущее с эмоциональным искусственным интеллектом примет формы, которые невозможно вообразить сегодня со стереотипным противопоставлением людей и машин: «Скорее в будущем люди и машины будут объединены в гетерогенные синтетические системы, в которых вы уже не сможете провести даже условную черту, разделяющую человека и продукт его технологий. В таком сценарии эмоциональному интеллекту уготована большая роль».
Материал предоставлен платформой «Теории и практики»