Ученые рассчитывают риски наводнения на Амуре с помощью машинного обучения

Московский авиационный институт запустил проект по прогнозированию паводков и оползней в регионах России. Над системой прогноза работают команда лаборатории по искусственному интеллекту и IT-центра МАИ. Сейчас участники проекта, который предполагает активное использование методов ML (машинного обучения), оценивают риски наводнения на Амуре.
Ученые рассчитывают риски наводнения на Амуре с помощью машинного обучения

Индустриальный запрос

Традиционные методы моделирования могут прогнозировать чрезвычайные природные явления только за 2-3 дня до их наступления. Благодаря машинному обучению проект позволит готовить сценарии на неделю вперёд.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

По словам разработчиков, новая система сможет, например, заранее предсказывать не только факт повышения уровня реки, но и определять конкретные участки населенных пунктов и дорог, которые будут подвержены затоплению. Это поможет оперативно организовать эвакуацию людей и рассчитать масштабы устранения последствий.

«Участники проекта откликнулись на индустриальный запрос, понимая необходимость в совершенствовании имеющихся систем. Идея отвечает запросам МЧС, региональных администраций, страховых компаний и глобальной повестке ESG-принципов», — комментирует руководитель IT-центра МАИ Мария Булакина.

Так, система прогнозирования не только сделает мониторинг опасных природных явлений качественнее, но и станет основой для скоринговой модели, по которой предсказывают риски в страховании недвижимости от природных катастроф.

Внедрение виртуальных гидропостов

Разработчики обучают нейросети и строят цифровые модели рельефа. В процессе работы они собирают исторические данные по уровням воды в разных точках рек на гидропостах, информацию о погоде в регионе и о рельефе местности. Полученные данные объединяются в модель для предсказания, трансформируемую нейронную сеть.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Прогноз строится на неделю вперёд, и его точность варьируется от 70% до 90% в зависимости от сложности рассматриваемого участка речной долины.

Аналогичные системы уже существуют на рынке. Преимущество данного проекта перед существующими состоит в использовании виртуальных гидропостов — цифровых двойников, установленных в неисследованных местах речной долины. Они предсказывают уровень воды там, где реальный счётчик параметров отсутствует — это уникальное решение команды.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Виртуальные гидропосты генерируются методами машинного обучения и математического моделирования.

«Из недостатков проекта пока можно отметить только зависимость модели от иностранных спутниковых систем, — рассказывает Мария Булакина. — Однако мы уже резервируем системы данных со спутников и прорабатываем стратегию развития отечественных платформ получения спутниковых снимков».

Развитие проекта

Проект будет внедрён в сервисы оповещения населения в регионах возможных наводнений. МЧС России принимает экспертное участие в разработке.

Сейчас разработчики системы делают упор на поисковые и фундаментальные исследования — разрабатывают концепцию решения задачи, собирают данные и готовят библиотеки с базовым функционалом.

В планах — внедрить проект в скоринговые модели, которые используют для оценки страховых рисков. Кроме того, полученные нейросетевые модели после опыта с рекой Амур будут применять для прогнозирования паводков на других реках России.