Создана нейросеть, ускоряющая поиск новых частиц на LHC
Эксперименты в физике высоких энергий требуют работы с большими данными. Например, в БАК каждую секунду происходят миллионы столкновений. Детекторы регистрируют их результаты и определяют их характеристики. Как правило, речь идет об «осколках» получившихся частиц, сами они до детекторов не доживают, распавшись где-то по дороге. Для анализа экспериментальных данных и понимания того, чьи осколки зарегистрированы детектором, необходимо знать, как он реагирует на уже известные частицы. Обычно для этого используют специальное программное обеспечение, настроенное на параметры — геометрию и физику — конкретного детектора.
Такие пакеты предоставляют достаточно точное описание откликов среды на прохождение заряженных частиц, однако скорость расчета каждого события может быть очень низкой. В частности, симуляция одного события БАК может занимать несколько секунд. Это плохо. В коллайдере каждую секунду происходят миллионы столкновений, из которых нужно как-то «выловить» интересные. Их там очень немного — первые единицы, да и то, если повезет. Было бы логично приблизить скорость компьютерных симуляций к реальной производительности коллайдера
Как говорится в сообщении ВШЭ, специалисты этого института и Школы анализа данных Яндекса смогли ускорить симуляцию с помощью генеративных состязательных сетей (Generative Adversarial Networks). Это две нейронные сети, которые в ходе конкурентного обучения соревнуются между собой. Такой способ обучения используется, например, для генерации фотографий никогда не существовавших людей. Одна сеть учится создавать похожие на реальность образы, а другая стремится найти отличия между искусственными и реальными представлениями. Удивительно, как методы, разрабатываемые, грубо говоря, для генерации реалистичных фотографий котов, позволяют на несколько порядков ускорить физические расчёты, — добавляет один из авторов исследования, аспирант ФКН ВШЭ Никита Казеев.
Исследователи научили генеративные состязательные сети предсказывать поведение заряженных элементарных частиц. Результаты показали, что физические явления с высокой точностью можно описать с помощью нейросетей.
Использование генеративных состязательных сетей для быстрой симуляции поведения детектора безусловно поможет будущим экспериментам, — комментирует один из авторов исследования, доцент факультета компьютерных наук ВШЭ Денис Деркач. — По сути, мы использовали наиболее современные методы обучения, доступные в науке о данных, и наши знания о физике детекторов.
Его манера взаимодействия с частицами была хорошо изучена и просчитана другими путями за десять лет работы BaBar, что позволило математикам натренировать искусственный разум и проверить его в деле.
Эти проверки завершились успешно — GAN-сеть правильно предсказала то, какие частицы должны возникать в этой установке, и при этом ускорила расчеты примерно в 80 раз. Как надеются ученые, их детище поможет предсказать то, как будут вести себя еще не открытые частицы, которые БАК обнаружит после завершения его очередного большого обновления в 2021 году.
Результаты исследования опубликованы в Nuclear Instruments and Methods in Physics.