Самый мощный магнит в мире: Теслы

Как бы затормозить груженый локомотив на расстоянии четверть миллиона километров – как раз столько отделяет нас от Луны. Магнетар, то есть магнитная нейтронная звезда, которую называют SGR 1806-20, – самый сильный из известных нам источников магнитного поля во Вселенной.
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Пока открыто всего десять таких звезд. Сила поля у этой звезды составляет 100 млрд Тл (в международной системе единиц магнитное поле измеряется в теслах). Для сравнения — у Земли всего 0,00005 Тл. Вряд ли мы когда-нибудь создадим магнит сопоставимой с магнетаром мощности. Но это не значит, что мы не пытаемся. Причины, по которым ученые упорно пытаются построить все более и более мощные магниты, варьируются от «а что будет, если?..» до реальной необходимости улучшить медицинское проекционное оборудование.

Рекорд пока принадлежит специалистам из Национальной лаборатории высоких магнитных полей (NHMFL), расположенной в городе Таллахасси (Флорида). В декабре 1999 года они запустили гибридный магнит. Он весит 34 т, высота его — почти 7 м, и он может создать магнитное поле в 45 Тл, что примерно в миллион раз больше, чем у Земли. Этого уже достаточно, чтобы свойства обычных электронных и магнитных материалов сильно изменились.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Этот магнит, разработанный NHMFL, представляет собой очень важную веху в строительстве МКС, считает руководитель лаборатории Джек Кроу.

Это вам не подкова

Если вы представили себе гигантскую подкову, вас ждет разочарование. Флоридский магнит (см. фото сверху) фактически представляет собой два, работающие в системе. Внешний слой — это сверхохлажденный, сверхпроводящий магнит. Он самый большой из когда-либо созданных такого рода. Его все время охлаждают до температуры, близкой к абсолютному нулю. Используется для этого система со сверхтекучим гелием — единственная в США, специально созданная для охлаждения данного магнита. А в центре хитрой штуковины заключен массивный электромагнит, то есть очень большой резистивный магнит.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Несмотря на гигантские размеры системы, построенной в NHMFL, площадка для экспериментов чрезвычайно мала. Обычно эксперименты проводят над объектами размером не больше кончика карандаша. При этом образец заключают в бутылочку, вроде термоса, чтобы сохранить низкую температуру.

Когда материалы подвергаются воздействию сверхвысоких магнитных полей, с ними начинают твориться очень странные вещи. Например, электроны «танцуют» на своих орбитах. А когда напряженность магнитного поля превышает 35 Тл, свойства материалов становятся неопределенными. Например, полупроводники могут менять свойства туда-сюда: в один момент проводить ток, в другой — нет.

Кроу говорит, что мощность флоридского магнита в течение пяти лет будет постепенно увеличена до 47, затем 48 и в конечном счете до 50 Тл, а результаты исследований уже превзошли самые смелые его ожидания: «Мы получили все, на что надеялись, и гораздо больше. Наши коллеги теперь одолевают нас просьбами предоставить им возможность тоже экспериментировать».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Применение в медицине

В то время как NHMFL концентрирует свои усилия на «чистых» исследованиях, большая часть разработок в сфере мощных магнитов продиктована необходимостью развития медицинской техники. Институт мозга при Университете штата Флорида утверждает, что ему принадлежит самый большой магнит из всех используемых в томографии. Этот 24-тонный «бегемот» может обнаружить в мозгу и позвоночнике длинный список болезней и изъянов. Его мощность 11,7 Тл, что в 234 тысячи раз больше, чем у Земли.

Чем сильнее магнитное поле, тем точнее и детальнее результаты, которые можно получить при использовании технологий вроде ядерного магнитного резонанса (ЯМР). Один из текущих проектов призван показать влияние паралича и лекарств, применяемых для его излечения, на клетки мозга. Исследование функционального ЯМР (фЯМР) покажет, сколько лекарства в точности потребили какие клетки.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Технологии ЯМР и фЯМР работают так. Сначала при помощи мощного магнитного поля ядра клеток выстраиваются в ряд, как иглы компаса. Затем менее мощный магнит поворачивает ядра. При этом вырабатывается измеримый сигнал, который фиксируется и при помощи компьютеров преобразуется в трехмерное изображение. Чем мощнее магниты, тем больше ядер среагируют на сигнал. В отличие от рентгеновских лучей, которые показывают кости и твердые ткани, ЯМР концентрируется на тканях мягких.

Все расширяющееся использование магнитов в медицине вызывает естественный вопрос — а полезно ли это? В последние годы было много споров на тему влияния близлежащих линий электропередач на людей и животных. Но изза того, что сила магнитного поля падает очень быстро, человек, живущий в какихнибудь 15 м от линии электропередач, получает всего два миллигаусса (мГс). Последние исследования говорят в пользу версии, что это не оказывает никакого влияния на человека.

С другой стороны, не обнаружено и абсолютно никакого положительного влияния от «нательных» магнитов, которые часто продают как универсальное средство от всех болезней — в том числе, артрита. Но миллионы людей по всему земному шару это не останавливает.