Как обычный атомный маятник способен помочь построить теорию всего
Беда в том, что за последние 80 лет никто не смог дать описание гравитационного взаимодействия с точки зрения квантовой механики (даже Эйнштейн). Однако исследователи из Национального института стандартов и технологий (NIST) предложили эксперимент, чтобы разрешить этот старинный спор и взяли два самых странных свойства квантовой теории.
Принцип суперпозиции
Согласно принципу суперпозиции, невозмущенная элементарная частица может быть описана как волна, которая с некоторой вероятностью может находиться в двух местах одновременно. Именно об этом говорит нам опыт с интерференцией электронов — поскольку электрон описывается волной, часть, которая проходит через одну щель, встречается с той частью, которая проходит через другую щель, и возникает хорошо известный узор из ярких и темных полос (интерференционная картина).
Квантовая запутанность
Второе странное свойство квантовой теории — квантовая запутанность. Две частицы могут быть настолько сильно взаимосвязаны, что ведут себя как единое целое и попытка узнать свойства одной из частиц автоматически меняет свойства другой, даже если частицы находятся на расстоянии многих тысяч световых лет.
Как физики описывают взаимодействия
В квантовой теории взаимодействие описывают через частицы-переносчики. Их называют «квантами поля», или, более корректно, калибровочными бозонами. Например, переносчик электромагнитного взаимодействия — фотон. И действительно, именно фотоны соответствуют электромагнитным волнам (в том числе световым).
Проблема в том, что для гравитационного взаимодействия калибровочный бозон так и не был найден, поэтому такое взаимодействие описывают гипотетической частицей, называемой гравитоном.
Если гравитон действительно существует, для тел в поле тяжести должно наблюдаться явление квантовой запутанности — так же, как оно наблюдается для двух фотонов.
Как поможет маятник?
В эксперименте, придуманном в Национальном институте стандартов и технологий (NIST), используется холодное облако атомов, заключенное внутри атомного интерферометра. Согласно принципу суперпозиции, если каждый атом в облаке находится в чистом невозмущенном квантовом состоянии, его можно описать как волну, равновероятно находящуюся как в левом, так и в правом плече интерферометра. Эти две части волны образуют интерференционную картину. Если гравитация как-то повлияет на атомы, мы сразу это увидим по изменениям интерференционной картины.
На выходе интерферометра подвешена небольшая «пробная масса» — маятник. Исследователи планируют наблюдать её отклонения — нужно проверить, действительно ли гравитация может вызвать квантовую запутанность между маятником и атомом.
«Распутывание» частиц
Если гравитация вызывает квантовую запутанность, маятник будет связан с определенным местоположением атома — «пробная масса» качнётся влево или вправо, в зависимости от того, в левом или в правом плече интерферометра находится атом.
Это будет означать, что маятник измерил местоположение атома, точно указав его определенную позицию внутри интерферометра. Поскольку атом больше не находится в суперпозиции (его местоположение точно определено и он со 100% вероятностью находится в левом или правом плече), интерференционная картина должна ослабнуть.
Спустя полпериода, когда маятник вернется в положение равновесия, «память» о запутанности потеряется, а значит, интерференционная картина восстановится. Спустя ещё полпериода колебания история повторится.
Такой эксперимент крайне сложно провести — авторы надеются провести его хотя бы через десять лет, однако прототип уже скоро будет готов.
Расскажем простыми словами, как физики пытались подружить четыре взаимодействия и почему гравитационное взаимодействие стоит особняком.