Следы космических катастроф: Вечная память

О чем свидетельствуют гамма-всплески, приходящие из очень далеких областей Вселенной, – о мощнейших разрушительных процессах гибели звезд... или о ядерных сражениях галактических цивилизаций?

На космическую катастрофу Мироздание уделило с космической точки зрения совсем немного времени. Сгустившееся газо-пылевое облако дало начало быстро вращающейся горячей звезде, массы которой хватило бы на сорок наших Солнц. За несколько миллионов лет она израсходовала весь водород и начала ускоренно жечь все более и более тяжелые элементы. Термоядерным топкам хватило гелия на полмиллиона лет, углерода — на несколько сотен, неона — всего на год, кремния и серы — на десятки часов. Когда последние резервы термоядерного горючего были исчерпаны, звезда обрела железное ядро. Дальше счет пошел на доли секунд, за которые ядро звезды сжалось и взорвалось. Наружные слои разлетелись, а недра претерпели гравитационный коллапс, завершившийся формированием черной дыры.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Однако звезда не просто исчезла. В экваториальной плоскости погибшего светила образовался диск из сверхплотной (10 млн. кг/см3) и сверхраскаленной (10 млрд. градусов) плазмы, вращающийся со скоростью порядка 1000 об./c. Вещество диска втягивалось по спиралям внутрь черной дыры и порождало электроны и позитроны, скорость которых приближалась к световой. Эти частицы могли выскользнуть из гравитационных объятий дыры, лишь двигаясь вдоль ее оси вращения, так как только приполярные области были практически свободны от плазменного покрова. Только что возникшая дыра выстрелила в противоположных направлениях двумя исполинскими струями — джетами. Пробегающие по джетам ударные волны породили гигантские магнитные поля, где ультрарелятивистские электроны, позитроны и примкнувшие к ним протоны закручивались по спиралям, излучая мощнейшие гамма-импульсы, уходящие вдоль этой же осевой линии. Процесс занял считанные секунды, однако успел высвободить в сто раз больше энергии, нежели нашему Солнцу суждено высветить за всю жизнь. По мере охлаждения джеты генерировали все более длинноволновые фотоны (сначала рентгеновские, затем ультрафиолетовые, а после и оптические). Чудовищный поток гамма-фотонов мчался через Вселенную, постепенно расширяясь в пространстве. Через миллиарды лет горсточка этих квантов встретилась с третьей планетой Солнечной системы...

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Ранние шаги

Еще полвека назад наблюдение гамма-лучей было уделом исключительно физиков. К счастью для всех читателей этой статьи, нижние слои атмосферы Земли задерживают опасное для жизни электромагнитное излучение с длиной волны менее 200 нм. К нему относятся жесткая часть ультрафиолета, рентген и гамма-лучи (с длиной волны менее 0,1 нм, что соответствует энергии квантов больше 10 кэВ). Поэтому аппаратуру для изучения внеземного гамма-излучения необходимо размещать как можно выше — либо на высотных аэростатах (именно так в 1959 году было обнаружено солнечное гамма-излучение), либо в космическом пространстве.

Уже в докосмическую эру астрофизики не сомневались в том, что Вселенная пронизана гамма-квантами. Теория утверждала, что они возникают и при взрывах сверхновых, и при взаимодействии космических лучей с межвездным газом, и при закрутке быстрых электронов в космических магнитных полях. В 1940-е годы над объяснением этих процессов немало потрудились профессор университета Вашингтона Юджин Финберг и его коллега и соавтор Генри Примаков, уроженец Одессы и внучатый племянник прославленного полководца Гражданской войны Виталия Примакова.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Первый гамма-телескоп был отправлен в космос в 1961 году на борту американского спутника Explorer-11. Он был весьма прост — коллиматор и панель сцинциляционных счетчиков (кристаллов или пластиков, генерирующих под действием гамма-излучения видимый свет, который усиливается фотоумножителем). Телескоп разочаровал ученых: в течение пяти месяцев он не смог зарегистрировать и сотни гамма-квантов. Однако было обнаружено, что эти высокоэнергетичные фотоны с равной вероятностью приходят с любого азимута и поэтому вряд ли возникают внутри нашей Галактики с ее плоскостной структурой. Астрофизики в то время приписали их происхождение соударениям между космическим газом и быстрыми частицами. Вскоре удалось обнаружить и гамма-излучение нашей Галактики — это сделала стартовавшая в 1967 году американская космическая обсерватория OSO-3. Европейский спутник COS-B (1975−1982 годы) помог составить первую гамма-лучевую карту Млечного Пути.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Однако все это были исследования, интересные лишь узким специалистам. Но в первых числах июня 1973 года мир узнал о поистине удивительном открытии в области гамма-астрономии. Эта информация вышла на публику при весьма анекдотических обстоятельствах и с опозданием на несколько лет.

Разведка не дремлет

В 1958 году командование американских ВВС решило, что наш спутник представляет собой удобный ядерный полигон. Военные планировали даже провести на Луне ядерный взрыв (об этом стало известно шесть лет назад). Дальше планов дело не пошло, однако в Вашингтоне задумались, как обнаружить советские ядерные испытания на обратной стороне Луны, если эти злокозненные «комми» (от слова «коммунисты») попробуют их провести. Физик-оружейник из Лос-Аламоса Стерлинг Колгейт (из семьи, известной каждому зубовладельцу) рекомендовал воспользоваться для этой цели спутниками с детекторами гамма-излучения, которое сопутствует ядерному взрыву. Проект утвердили и назвали Vela (от испанского глагола velar — дежурить, отслеживать).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Аппараты семейства Vela уходили на орбиту парами (первая — в 1963 году) и имели на борту приборы для детектирования рентгеновского и гамма-излучения, а также нейтронов. Поначалу они не отличались чувствительностью, но запущенные в апреле 1967 года 350-кг Vela-4 были оснащены вполне приличными гамма-сенсорами с временным разрешением порядка 1/8 секунды. Им-то и суждено было войти в историю астрофизики.

Сигналы со спутников выдавались в виде распечаток, но анализировали их вручную — автоматической обработки подобных данных в то время не было. Этим занималась небольшая группа из Лос-Аламоса, которая просто не успевала работать в реальном времени. Так и получилось, что на данные за середину лета 1967 года впервые взглянули лишь в марте 1969-го. Именно тогда Рэй Клибсадел и Рой Олсон обнаружили на распечатках от 2 июля два импульса космического гамма-излучения. Первый был очень коротким, второй же растянулся на две с лишним секунды.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Ученые были изрядно озадачены. Было ясно, что к ядерному взрыву эти импульсы никакого отношения не имели. 2 июля 1967 года не наблюдалось ни вспышки сверхновой, ни извержения на Солнце, которое тоже может дать о себе знать потоком гамма-квантов. Иных объяснений не находилось, и первооткрыватели загадочного явления решили подождать. Уже были готовы к запуску Vela-5, а через год за ними последовали близнецы Vela-6 с улучшенным оборудованием, способные прояснить ситуацию. И действительно, к лету 1973 года приборы зарегистрировали 16 гамма-вспышек, источники которых, судя по всему, распределялись по небесной сфере случайным образом. Было очевидно, что «производители» гамма-лучей чрезвычайно далеки от Земли и что в момент возникновения эти импульсы обладали огромной энергией. В открытии сомневаться не приходилось. 1 июня 1973 года Клибсадел, Олсон и Стронг впервые сообщили о нем в заметке в Astrophysical Journal Letters. Через несколько дней Клибсадел выступил с докладом на сессии Американского астрономического общества. Среди слушателей затесался репортер, спросивший, можно ли объяснить вспышки битвами внеземных цивилизаций. Клибсадел ответил, что земные ядерные взрывы имеют иные гамма-подписи, но отрицать возможность галактических сражений он не берется. Журналисту хватило этого невинного замечания для статьи о звездных войнах в таблоиде National Enquirer. В результате и астрономы, и широкая публика узнали о гамма-вспышках почти одновременно.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Штурм гамма-диапазона

Специалисты увлеклись новым явлением всерьез и надолго. Загадочные вспышки назвали гамма-барстерами (от англ. burst — взрыв). Интерес к ним подхлестнуло открытие в 1975—1976 годах аналогичных всплесков рентгеновского излучения, зафиксированных и аппаратами Vela, и голландским астроспутником ANS. Любопытно, что первые детекторы, запрограммированные для поиска гамма-барстеров, были установлены не на американских, а на европейских платформах — немецкой околосолнечной космической обсерватории Helios-2 (1976) и советском спутнике «Прогноз-6» (1977). В 1978-м такие приборы отправились в околоземное пространство на «Прогнозе-7», а в дальний космос — на борту советских станций «Венера-11» и «Венера-12» и американского Pioneer Venus Orbiter. Наконец, гамма-детекторы несли некоторые спутники серии «Космос» и запущенные в 1981 году «Венера-13» и «Венера-14».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Тем не менее сведения о гамма-барстерах накапливались медленно. Дело шло бы быстрее, если бы NASA своевременно реализовало программу запуска крупной гамма-обсерватории, составленную еще в 1977 году. C опозданием на шесть лет она была выведена на околоземную орбиту шаттлом «Атлантис» 5 апреля 1991 года. Ей присвоили имя лауреата Нобелевской премии Артура Комптона, одного из основоположников физики высоких энергий. 17-тонная станция CGRO (Compton Gamma Ray Observatory) проработала больше девяти лет. Однако после отказа в декабре 1999 года одного из трех гироскопов руководители NASA, невзирая на протесты астрофизиков, постановили снять станцию с орбиты и затопить в пустынной части Тихого океана.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Комптон» сыграл важную роль в истории космической гамма-астрономии. Его аппаратура давала возможность регистрировать фотоны с энергиями от 30 кэВ до 30 ГэВ, в то время как самый большой из «докомптоновских» гамма-телескопов, установленный на советско-французской орбитальной обсерватории «Гамма» (1990−1992), действовал в диапазоне 50 МэВ — 6 ГэВ. «Комптон» зарегистрировал 2704 гамма-вспышки, больше, чем любой из его предшественников. Наблюдения «Комптона» подтвердили, что космические гамма-всплески с равной вероятностью приходят с любого направления, и показали, что гамма-барстеры подразделяются на два класса: «короткие», со средней продолжительностью около 300 миллисекунд, и «длинные», с типичной протяженностью от 2 до 20 секунд (и даже до минут). Средняя энергия фотонов коротких всплесков значительно превышает энергию «длинновспышечных» гамма-квантов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Однако возможности «Комптона» имели свои пределы. Даже его великолепная аппаратура могла определить расположение вспышек на небесной сфере с точностью от 1 до 10 градусов. Координаты абсолютного большинства гамма-барстеров, наблюдавшихся к концу прошлого века, были выявлены именно с этой погрешностью; еще около сотни вспышек удалось привязать к карте звездного неба с ошибкой от 0,5 градуса до 3 угловых минут. Именно поэтому астрономам никак не удавалось отождествить гамма-всплески с оптическими источниками, расстояние до которых можно было бы определить по смещению спектральных линий.

Делу науки опять помог случай. 30 апреля 1996 года с мыса Канаверал ушел в космос на шестилетнюю службу итальянско-голландский спутник BeppoSAX. Первая часть названия — имя пионера астрофизики высоких энергий Джузеппе (для друзей Беппо) Оккиалини, а вторая — аббревиатура Satellite per Astronomia i Raggi X (спутник для рентгеновской астрономии). Помимо прочего оборудования он был оснащен монитором гамма-барстеров, рассчитанным на диапазон 60−600 кэВ. Оборудование спутника долго барахлило, поэтому он реально заработал лишь в конце осени. Однако усилия по отладке аппаратуры не пропали даром. В феврале и мае 1997 года спутник прислал на Землю данные о двух гамма-барстерах и определил их координаты с точностью до 1 угловой минуты. Астрономы тщательно просмотрели эти участки неба в обычные телескопы и обнаружили там почти неразличимые оптические источники. В первом случае свечение оказалось чересчур слабым для спектрального анализа, но во втором спектре были видны линии поглощения, сильно сдвинутые в красную сторону. Величина смещения была равна 0,835, и это означало, что расстояние до источника составляет порядка 6 миллиардов световых лет.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Полученные результаты сразу же вывели дискуссию о природе гамма-всплесков на новый уровень. Коль скоро они могут преодолевать такие чудовищные расстояния, их полная светимость (количество выделившейся энергии) должна составлять не меньше 1051−1052 эрг, а возможно, даже 1054 эрг. Эта величина соответствует энергии, которая выделилась бы при полной аннигиляции всей массы нашего Солнца! Какие физические механизмы способны обеспечить генерацию столь фантастических потоков энергии за какие-то секунды?