Когда погаснет БАК: что станет с адронным коллайдером
Поезд вышел из пункта А в пункт Б, навстречу ему вышел другой такой же поезд. В пункте В они встретились лоб в лоб и, судя по записям с видеокамер, – испарились, превратившись в 52 автомобиля, три вертолета, ракету «Ангара» и 18 старушек, тут же покинувших место происшествия. Столкновения протонов и других субатомных частиц выглядят примерно так: они распадаются, излучают и переходят одна в другую. В конце концов, развалиться на более мелкие составляющие им зачастую невозможно, ведь частиц мельче просто не существует.
Но превращения эти никак не случайны, и Стандартная модель физики элементарных частиц великолепно предсказывает, что, как и с чем должно столкнуться, чтобы привести к тому или иному результату. С помощью Большого адронного коллайдера (БАК) исследователи завершили проверку этой гипотезы жирным росчерком «работает», обнаружив последнюю из 17 элементарных частиц, существование большинства из которых было сперва показано «на кончике пера», а затем и доказано экспериментально. Шесть кварков и шесть лептонов, четыре бозона –переносчика фундаментальных взаимодействий, плюс бозон Хиггса, плюс их античастицы – но ведь это далеко не все.
Большая часть общей энергии Вселенной приходится на темную материю и темную энергию, природа которых совершенно неизвестна. Их действие достоверно доказывается наблюдениями, но их не втиснуть в рамки Стандартной модели, как не добавить несколько дополнительных ячеек в периодическую таблицу химических элементов: здесь все взвешено и распределено слишком точно для того, чтобы нашлось хотя бы одно незанятое место. Ясно, что при всем своем блеске Стандартная модель не описывает фундаментальные основы нашего мира целиком и полностью. Но что тогда описывает – теория струн? Или квантовая гравитация? И какие указания найти для движения за пределы привычной физики? Нам остается сталкивать частицы – и подсчитывать все эти «автомобили» и «вертолеты», пытаясь найти хоть какие-то подсказки.
Большой. Адронный
По большому счету, получать, разгонять и сталкивать мы умеем только электроны и протоны (и их античастицы): они обладают зарядом, который позволяет ускорить их в электромагнитном поле. Простейшие системы, созданные еще в первой половине прошлого века, использовали для разгона обычные постоянные магниты и пузырьковую камеру для регистрации частиц. Впрочем, уже вскоре в ускорителях начали использовать куда более мощные электромагниты, а частицы стали ускорять в кольцевых трубках: наматывая круги, они могут набирать все большую скорость.
В БАК для этого используется кольцевой тоннель длиной 26,7 км, оснащенный 1624 сверхпроводящими электромагнитами: на огромный инструмент приходится около 10% годового энергопотребления всего кантона Женева. Включаясь и выключаясь в строго определенной последовательности, заданной колебаниями управляющего сигнала, электромагниты разгоняют протоны до энергии в 6,5 ТэВ. На такой скорости они делают порядка 10 тыс. оборотов по тоннелю, двигаясь в противоположных направлениях, – и сталкиваются с огромной силой, порождая целый зоопарк частиц, распады которых регистрируют семь детекторов коллайдера.
Огромный. Адронный
Главный интерес современных ученых смещается в область все более массивных частиц, которые могут указать на следы долгожданной «новой физики». Появление и регистрация таких частиц требуют все больших энергий, и БАК стал заметным шагом в этом направлении. Следующим логичным движением может стать простое увеличение масштаба – и колоссальный проект FCC (Future Circular Collider, Кольцевой коллайдер будущего) действительно рассматривается в ЦЕРН среди вероятных «сменщиков» БАК. Для его туннеля длиной 80–100 км существующий коллайдер будет служить лишь источником частиц, которые смогут набирать головокружительные 100 ТэВ энергии и, возможно, укажут на процессы, выходящие за рамки Стандартной модели.
До сих пор созданы далеко не все технологии, необходимые для реализации этого амбициозного проекта. Ему, например, понадобятся намного более эффективные электромагниты и система отведения тепла от стенок, бомбардируемых синхротронным излучением. Однако времени у ученых пока достаточно: БАК должен проработать до 2030 года, и программу дальнейших действий ЦЕРН планируется принять только в 2020-м. Возможно, что в итоге прорыв обеспечит другая и более расчетливая стратегия. Недаром проект адронного коллайдера FCC до сих пор остается на самых ранних этапах рассмотрения, тогда как на первый план стремительно выходят ускорители, работающие с электронами и позитронами.
Кольцевой. Электрон-позитронный
Электроны проще контролировать, они мельче и позволяют рассмотреть более тонкие эффекты: говорят, что «адронные коллайдеры – для открытий, а электрон-позитронные – для исследований». Возможно, пришла их пора. Ведь даже 27-километровый кольцевой туннель БАК прежде служил для работы электрон-позитронного коллайдера LEP (Large Electron-Positron Collider), который вполне можно возродить с использованием уже новых технологий. Такой проект рассматривается в ЦЕРН – ожидается, что он достигнет энергии в 240 ГэВ. Эта цифра может и не впечатлять, но ее вполне достаточно для массового производства хиггсовских бозонов и их детального изучения.
С другой стороны, электрон-позитронный коллайдер может быть построен и в 80-километровом кольце наподобие FCC – тогда в будущем у него останется пространство для модернизации и достижения по-настоящему больших энергий. Такой подход может быть реализован в Китае. Близ Циньхуандао на востоке страны уже вовсю готовятся к строительству собственной «хиггсовской фабрики» в кольцевом туннеле длиной 50–70 км. Работы планируется начать в 2021 году, а с 2028 года новый коллайдер CEPC (Circular Electron Positron Collider) должен начать первые столкновения электронов. Инструмент готовится с расчетом на будущую модернизацию и после 2035 года может быть перестроен под сверхмощные столкновения протонов. Такой путь логичен хотя бы потому, что кольцевой тоннель не лучший вариант для работы с легкими электронами.
Линейный. Электрон-позитронный
Любая заряженная частица, летящая с достаточной скоростью, будет терять энергию на излучение каждый раз, когда меняется ее скорость или направление. Недаром туннели кольцевых коллайдеров, включая БАК, построены не ровными окружностями, а скорее прямоугольниками со скругленными углами. Это позволяет ловить возникающее синхротронное излучение лишь на определенных участках траектории и даже частично использовать его в деле. Это жесткое излучение исключительно полезно для исследования новых материалов и биологических макромолекул, хотя с точки зрения фундаментальной физики является большой проблемой. Электронные и электрон-позитронные коллайдеры теряют на него существенную часть затраченной на ускорение энергии, к тому же нагревая стенки вакуумной камеры кольца.
Мощность синхротронного излучения обратно пропорциональна массе частицы в четвертой степени, поэтому для адронных ускорителей эта проблема стоит не так остро. Однако потери энергии при разгоне по кольцу все же останутся слишком существенными, что заставляет все пристальнее присматриваться к перспективам новых линейных инструментов, в которых пучки частиц летят друг навстречу другу по длинным прямым туннелям. Появление современных сверхпроводниковых магнитов позволяет достичь достаточных энергий даже на протяжении вполне приемлемой – порядка десятков километров – дистанции. Один из таких проектов – CLIC (Compact Linear Collider) с туннелем длиной от 11 до 50 км и энергиями до 3 ТэВ – может быть пристроен к БАК, получая из него частицы для дальнейшего ускорения. Но пока решение ЦЕРН лишь готовится, его конкуренту осталось дождаться только инвестиций.
С немалой вероятностью ЦЕРН отложит свой проект CLIC ради Международного линейного коллайдера ILC (International Linear Collider). Планируется, что его прямые плечи длиной по 12 км смогут сталкивать электроны с энергиями 250 ГэВ, делая установку продуктивной «хиггсовской фабрикой», а впоследствии уровень энергий может быть поднят до 500 ГэВ. ЦЕРН рассматривал несколько вариантов для строительства ILC, включая Германию (как основного вкладчика организации) и Россию (подмосковную Дубну с ее подходящей научно-технической инфраструктурой). Однако правительству Японии удалось фактически «переманить» ультрасовременный проект к себе, пообещав предоставить до половины необходимых для строительства финансов, которые в ценах 2007 года составляли почти 7 млрд долларов. 18 декабря – запомните эту дату – решение должно быть принято окончательно. Уже вскоре из множества тропинок, открытых на ближайшие десятилетия, – кольцевых и линейных, адронных и электрон-позитронных – некоторые превратятся в широкие магистрали новых мегапроектов и, возможно, даже приведут нас к долгожданной «новой физике».