Нейроинтерфейсы: сможете ли вы стать киборгом через 10 лет

Идея напрямую совместить живой и электронный мозг уже не первое десятилетие будоражит умы ученых по всему миру. Современные нейроимпланты позволяют воплотить ее в жизнь, однако так ли они совершенны, как кажется на первый взгляд?
Нейроинтерфейсы: сможете ли вы стать киборгом через 10 лет

Подобно тому, как древние греки мечтали о том, что когда-нибудь человек будет летать как птица, современные ученые и просто фантазеры грезят о наступлении эпохи, когда совмещение человеческого разума и машины позволит победить нашего самого главного врага – смерть. Но может ли живой ум напрямую подключиться к искусственному интеллекту с помощью технологического интерфейса «мозг-компьютер» (BCI, brain-computer interface), чтобы преодолеть ограничения биологической природы?

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

За последние 50 лет исследователи из университетских лабораторий и компаний по всему миру добились впечатляющего прогресса в области синтеза человеческого и компьютерного сознания. В последнее время предприниматели вроде Элона Маска или Брайана Джонсона все чаще объявляют о новых стартапах, стремящихся расширить возможности человека посредством «умных» компьютерных систем.

Но что на самом деле представляют собой технологии объединения живого и электронного мозга в наши дни? И каковы могут быть последствия подключения сознания к цифровому интерфейсу?

Бионические импланты: как электроника дополняет человека

Эб Фетц (Eb Fetz), исследователь в Центре сенсорной нейронной инженерии (CSNE), является одним из первых «пионеров» подключения компьютера к мозгу. В 1969 году, еще до эпохи персональных компьютеров, он опытным путем доказал, что можно усилить мозговые сигналы обезьян для контроля иглы, которая двигалась по циферблату.

Нажми и смотри

Большая часть работы над современным BCI направлена на улучшение качества жизни людей, страдающих от серьезных нарушений двигательной системы или вовсе парализованных. Мы уже были свидетелями подобных технологий: к примеру, исследователи из Университета Питсбурга использовали мозговые сигналы для управления роботизированной рукой. А ученые из Стэндфорда смогли подключить мозг к планшету, что позволило парализованным пациентам пользоваться гаджетами с помощью беспроводной сети.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Аналогичным образом и некоторые виртуальные сигналы могут быть отправлены в мозг для имитации ощущения. Подобные манипуляции как правило осуществляются с помощью слабых импульсов тока. Но как насчет основных чувств человека – зрения и слуха? Уже сейчас существуют прототипы бионических глаз для людей с серьезным ухудшением зрения. Это уже коммерческие продукты, а не просто лабораторные образцы, хотя на современном рынке их выбор не так уж и велик. А вот импланты для восстановления слуховой функции напротив стали самой успешной и наиболее распространенной в мире бионикой – сейчас ими пользуются примерно 300 000 человек.

Нажми и смотри

Двунаправленный интерфейс «мозг-компьютер» (BBCI) может не только считывать сигналы из головного мозга, но и отправлять информацию обратно в мозг посредством стимуляции. Наиболее сложными разновидностями подобных систем являются, конечно, те, которые взаимодействуют с нервной системой. Сейчас ученые изучают BBCI как радикально новый реабилитационный инструмент для лечения инсультов и травм спинного мозга. Исследования показали, что BBCI можно использовать для укрепления связей между двумя областями мозга или между мозгом и спинным мозгом и перенаправлять информацию в обход области повреждения, чтобы реанимировать парализованную конечность.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Казалось бы, можно сделать вывод, что уже через 10-15 лет нейроинтерфейсы, напрямую связанные с мозгом, будут неотъемлемой частью жизни каждого человека. Или же нет?

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Время еще не пришло

Далеко не все BCI являются инвазивными. Существуют и те, которые не требуют хирургического вмешательства. Как правило, принцип их работы основан на снятии показателей мозговой активности через черепную коробку (те самые забавные шапочки с электродами и проводами). С их помощью можно, к примеру, передвигать курсор по экрану, управлять инвалидной коляской, роботизированным манипулятором, беспилотниками и даже гуманоидными роботами.

Center for Sensorimotor Neural Engineering (CSNE), CC BY-ND
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Звучит круто, но давайте присмотримся к существующим прототипам повнимательнее. Уже с первого взгляда понятно, что все эти чудеса инженерной мысли работают намного медленнее и менее аккуратно, чем «натуральные» части человеческого тела. У бионического глаза очень низкое разрешение; слуховой имплант еще кое-как справляется с речью, но не позволяет прослушивать музыку или просто сложные звуковые композиции. Для того, чтобы технология работала надежно, ее вольно-невольно придется вживить хирургическим путем – это перспектива, на которую может решиться далеко не каждый человек.

Стоит также отметить, что все демонстрации современной бионики проводятся в лабораторных условиях после длительной и методичной калибровки оборудования под каждую конкретную ситуацию. В настоящее время эксперименты доказывают, что подобные технологии можно реализовать на практике – но они еще очень, очень далеки от того, чтобы их использование в повседневности было практично и удобно.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Адаптация к нейроинтерфейсам

Несмотря на все проблемы, перечисленные выше, в будущем ситуация может в корне измениться. К примеру, никто не требует от BCI быть идеальным: наш мозг обладает уникальными адаптивными способностями. Точно так же, как мы учимся водить автомобиль или пользоваться смартфоном, можно приучить организм к новым типам сенсорной информации, даже если она передается не инвазивно, а, к примеру, с помощью магнитных импульсов.

В конечном счете, судя по всему, именно двунаправленный BCI будущего и станет тем способом, который обеспечит полноценное взаимодействие живого и механического мозга. Например, инъецируемое «нейронное кружево» может оказаться многообещающим способом постепенно позволить нейронам расти вместе с имплантированными электродами, а не отказываться от них. Гибкие нанопроволочные зонды, нейронные мосты и стеклообразные углеродные интерфейсы могут также позволить биологическим и технологическим компьютерам успешно сосуществовать в наших телах.