Короткоживущий тетранейтрон с беспрецедентными свойствами

Ученый МГУ имени М.В. Ломоносова и его коллеги, используя новое взаимодействие между нейтронами, теоретически обосновали полученное в эксперименте низкое значение энергии тетранейтронного резонанса. Это доказывает возможность существования частицы, состоящей из четырех нейтронов, но в течение очень короткого времени.
Короткоживущий тетранейтрон с беспрецедентными свойствами

Коллектив российских, немецких и американских ученых, в состав которого входит старший научный сотрудник Научно-исследовательского института ядерной физики (НИИЯФ) имени Д.В. Скобельцына Андрей Широков, вычислил энергию резонансного состояния тетранейтрона. Их теоретические расчеты, имеющие в своей основе новый подход к исследованию и новое взаимодействие между нейтронами, согласуются с данными эксперимента, в котором был образован тетранейтрон. Согласно расчетам, время жизни тетранейтрона составляет 5x10−22 сек. С результатами работы можно ознакомиться в журнале Physical Review Letters.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В поисках нейтронной стабильности

Нейтрон живет около 15 мин. перед тем, как распадается на протон, электрон и антинейтрино. Известна также стабильная система, состоящая из огромного числа нейтронов, нейтронная звезда. Целью ученых было выяснить, существуют ли какие-то другие, хотя бы короткоживущие системы, состоящие только из нейтронов.

Система из двух нейтронов не образует даже короткоживущих состояний. На основе многолетних экспериментальных и теоретических исследований считается общепринятым, что нет таких состояний и в системе из трех нейтронов. Более 50 лет велись поиски тетранейтрона — системы из четырех нейтронов. Многие годы эти поиски не приносили результата, пока в 2002 году группа французских исследователей в эксперименте на Большом национальном ускорителе тяжелых ионов (Grand accélérateur national d’ions lourds или GANIL) в Кане не обнаружила 6 событий, которые могли бы трактоваться как образование тетранейтрона. Однако воспроизвести этот эксперимент не удалось, и некоторые исследователи придерживаются мнения, что в нем использовался некорректный анализ данных.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Новый этап поисков тетранейтрона проводится на Фабрике радиоактивных ионов в японском институте RIKEN, где научились создавать хороший пучок ядер 8Не. Ядро 8Не состоит из a-частицы (ядра 4Не) и окружающих ее четырех нейтронов. Заявки на проведение экспериментов по поиску тетранейтрона были поданы сразу несколькими группами ученых из разных стран. В первом таком эксперименте, опубликованном в этом году японской группой, ядра 8Не направлялись на мишень из ядер 4Не, и в результате столкновения a-частица выбивалась из 8Не, оставляя систему из четырех нейтронов. Было обнаружено четыре события, которые интерпретируются как короткоживущее резонансное состояние тетранейтрона. Этот эксперимент продолжается.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
В результате столкновения в эксперименте a-частица выбивалась из 8Не, оставляя систему из 4 нейтронов, или тетранейтрон
В результате столкновения в эксперименте a-частица выбивалась из 8Не, оставляя систему из 4 нейтронов, или тетранейтрон

Сколько жить тетранейтрону?

В своей статье ученый МГУ имени М.В. Ломоносова и его коллеги привели теоретические оценки энергии резонансного состояния тетранейтрона и его времени жизни. Они помогали в подготовке одного из экспериментов по поиску тетранейтрона, когда с просьбой обратилась группа экспериментаторов из Германии.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Такие оценки были проведены нами в разных моделях, и соответствующие результаты легли в основу заявки на эксперимент. После этого был тщательно разработан теоретический подход и проведены многочисленные расчеты на суперкомпьютерах, результаты которых и опубликованы в нашей статье в Physical Review Letters», говорит Андрей Широков, первый автор статьи.

Полученные результаты для энергии тетранейтронного резонанса 0.84 МэВ прекрасно согласуются с данными японского эксперимента 0.83 МэВ, которые, впрочем, характеризуются большой погрешностью (примерно ±2 МэВ). Для ширины резонансного состояния тетранейтрона рассчитано значение 1.4 МэВ, что соответствует времени его жизни примерно 5x10−22 сек.

«Отметим, что до нас ни в одной теоретической работе не предсказывалось существование резонансного состояния тетранейтрона при таких низких энергиях, порядка 1 МэВ», продолжает Андрей Широков.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Возможно, это связано с тем, что ученые разработали и применили новый теоретический подход к исследованию резонансных состояний в ядерных системах, который был апробирован на более простых задачах и затем применен к исследованию тетранейтрона с учетом специфики распада этой системы на четыре частицы.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Однако возможна и другая причина, связанная с тем, что мы использовали новое взаимодействие между нейтронами, разработанное в нашей группе. Исследования эти будут продолжены, мы проведем расчеты с другими, более традиционными взаимодействиями, а наши французские коллеги намерены изучить тетранейтрон с нашим взаимодействием в их подходе. Ну и, конечно, с огромным интересом ожидаются результаты новых экспериментов по поиску тетранейтрона», заключает Андрей Широков.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Исследования проводились большой интернациональной группой теоретиков, где со стороны России участвовали ученые не только из МГУ имени М.В. Ломоносова, но и из Тихоокеанского государственного университета (г. Хабаровск), а также коллеги из США и Германии. В дальнейшем в работы включатся ученые из Южной Кореи. Российская сторона играла ведущую роль в этих исследованиях, в разработке теоретического подхода как к исследованию резонансных состояний, так и к построению нового взаимодействия между частицами в атомных ядрах.