Антинейтрино имеют низкую вероятность взаимодействия с веществом и обладают крайне высокой проникающей способностью: они могут беспрепятственно пролететь сквозь сотни метров стали и бетона, неся точную информацию о том, что происходит в центре ядерного реактора. При этом на человека никакого воздействия антинейтрино не оказывают.
Детектор для эффективного мониторинга ядерных реакторов

Метод прикладного использования антинейтрино для мониторинга работы реакторов атомных станций был предложен еще в 70-е годы сотрудником Курчатовского института атомной энергии (в настоящее время РНЦ Курчатовский институт), профессором Л.А. Микаэляном. В 80-е годы этот метод был подтвержден рядом блестящих экспериментов, проведенных группой Л.А. Микаэляна на реакторе Ровенской атомной электростанции.
К 2000 году техника детектирования антинейтрино с использованием жидких сцинтилляторов достигла такого совершенства и степени изученности, что стало возможным проводить не только масштабные фундаментальные исследования с использованием детекторов большого объема (DoubleCHOOZ, Reno, DayaBay), но и создание промышленного детектора антинейтрино.
На сегодня группой ученых Александра Чепурнова завершен первый этап создания промышленного детектора антинейтрино: готовы для тестирования образцы жидкого сцинтиллятора, протестированы фотоэлектронные умножители и собран электронный тракт обработки данных с фотоэлектронных умножителей; изготовлены два 30-литровых прототипа для предварительных тестов на совместимость конструкционных материалов с жидким сцинтиллятором, отработки промышленных конструктивных решений и проверки свойств фотоэлектронных умножителей и различных вариантов жидкого сцинтиллятора.
Как будет осуществляться мониторинг ядерного реактора? Цепная реакция деления, протекающая в активной зоне ядерного реактора, сопровождается излучением электронного антинейтрино в ходе бета-распада перегруженных нейтронами осколков деления. В среднем в результате одного акта деления испускается около 6 антинейтрино.
По интенсивности и плотности потока антинейтрино детектор дистанционно сможет измерять изменение тепловой мощности реактора, оценивать композитный состав топлива и скорость наработки плутония-239 для независимого и параллельного подтверждения состояния активной зоны реактора.
Детектор антинейтрино может в течение нескольких часов определить, что произошла несанкционированная остановка реактора, которая может быть использована с целью извлечения плутония-239 для создания ядерных боеприпасов.
Для справки: на атомных электростанциях наиболее распространено топливо в виде таблеток из урана-238, обогащенного на 2−5% ураном-235 в виде спеченного диоксида урана UO2, диаметром 9−10 мм, которые помещены в цилиндрическую защитную оболочку, изготовленную из циркониевого сплава. Важно то, что в процессе работы ядерного реактора под воздействием нейтронов из урана-238 нарабатываются изотопы плутония, которые могут быть извлечены из топлива и использованы для изготовления ядерных боеприпасов.
Изготовители считают, что промышленный детектор антинейтрино может стать надежным дополнительным инструментом МАГАТЭ (межправительственное Международное агентство по атомной энергии) для решения задачи нераспространения делящихся материалов.
С реализацией и последующим внедрением промышленного детектора антинейтрино в технологический цикл работы атомной станции у агентства появится возможность постоянного контроля в реальном времени за использованием делящихся материалов. В свою очередь, государство будет иметь независимые данные, показывающие, что материалы применяются по назначению в соответствии с подписанным соглашением с МАГАТЭ.
«Все компоненты и детали первого промышленного детектора антинейтрино планируется изготовить к первой половине 2014 года. Сборка и тестирование детектора, измерение его физических характеристик займет весь 2014 год. Следующим этапом будет планирование и проведение демонстрационного эксперимента на атомной станции», — сообщил Александр Чепурнов.
По сообщению НИИЯФ МГУ