Гелий-3: как он используется... в медицине

Этот изотоп планируется добывать на Луне для нужд термоядерной энергетики. Однако это дело далекого будущего. Тем не менее гелий-3 чрезвычайно востребован уже сегодня — в частности, в медицине.
Гелий-3: как он используется... в медицине

Общее количество гелия-3 в атмосфере Земли оценивается всего лишь в 35 000 т. Его поступление из мантии в атмосферу (через вулканы и разломы в коре) составляет несколько килограммов в год. В лунном реголите гелий-3 постепенно накапливался в течение сотен миллионов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04%) значительно выше, чем в земной атмосфере.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Амбициозные планы добычи гелия-3 на Луне, на полном серьезе рассматриваемые не только космическими лидерами (Россия и США), но и новичками (Китай и Индия), связаны с надеждами, которые возлагают на этот изотоп энергетики. Ядерная реакция 3Не+D→4Не+p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T+D→4Не+n.

К этим преимуществам относится в десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведенную радиоактивность и деградацию конструкционных материалов реактора. Кроме того, один из продуктов реакции — протоны — в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии. При этом и гелий-3, и дейтерий неактивны, их хранение не требует особых мер предосторожности, а при аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю. Есть у гелий-дейтериевой реакции и серьезный недостаток — значительно более высокий температурный порог (для начала реакции требуется температура порядка миллиарда градусов).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Хотя все это дело будущего, гелий-3 чрезвычайно востребован и сейчас. Правда, не для энергетики, а для ядерной физики, криогенной промышленности и медицины.

Магнитно-резонансная томография

С момента своего появления в медицине магнитно-резонансная томография (МРТ) стала одним из основных диагностических методов, позволяющих без всякого вреда заглянуть «внутрь» различных органов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Примерно 70% массы человеческого тела приходится на водород, ядро которого, протон, обладает определенным спином и связанным с ним магнитным моментом. Если поместить протон во внешнее постоянное магнитное поле, спин и магнитный момент ориентируются либо вдоль поля, либо навстречу, причем энергия протона в первом случае будет меньше, чем во втором. Протон можно перевести из первого состояния во второе, передав ему строго определенную энергию, равную разнице между этими энергетическими уровнями, — например, облучая его квантами электромагнитного поля с определенной частотой.

Как намагнитить гелий-3
widget-interest

Простейшим и самым прямым способом намагнитить гелий-3 является его охлаждение в сильном магнитном поле. Однако эффективность этого метода весьма низка, к тому же он требует сильных магнитных полей и низких температур. Поэтому на практике применяют метод оптической накачки – передачи атомам гелия спина от поляризованных фотонов накачки. В случае с гелием-3 это происходит в два этапа – оптическая накачка в метастабильном состоянии и спиновый обмен между атомами гелия в основном и метастабильном состоянии. Технически это реализуется путем облучения лазерным излучением с круговой поляризацией ячейки с гелием-3, переведенного в метастабильное состояние слабым высокочастотным электрическим разрядом, в присутствии слабого магнитного поля. Поляризованный гелий можно хранить в сосуде с внутренним покрытием из цезия при давлении 10 атмосфер в течение порядка 100 часов.

Именно так и устроен МР-томограф, только обнаруживает он не отдельные протоны. Если поместить образец, содержащий большое количество протонов в мощное магнитное поле, то количества протонов с магнитным моментом, направленным вдоль и навстречу полю, окажутся примерно равными. Если начать облучать этот образец электромагнитным излучением строго определенной частоты, все протоны с магнитным моментом (и спином) «вдоль поля» перевернутся, заняв положение «навстречу полю». При этом происходит резонансное поглощение энергии, а во время процесса возвращения к исходному состоянию, называемому релаксацией, — переизлучение полученной энергии, которое можно обнаружить. Это явление и называется ядерным магнитным резонансом, ЯМР. Средняя поляризация вещества, от которой зависит полезный сигнал при ЯМР, прямо пропорциональна напряженности внешнего магнитного поля. Чтобы получить сигнал, который можно обнаружить и отделить от шумов, требуется сверхпроводящий магнит — только ему под силу создать магнитное поле с индукцией порядка 1−3 Тл.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Магнитный газ

МР-томограф «видит» скопления протонов, поэтому отлично подходит для изучения и диагностики мягких тканей и органов, содержащих большие количества водорода (в основном в виде воды), а также дает возможность различать магнитные свойства молекул. Таким способом можно, скажем, отличить артериальную кровь, содержащую гемоглобин (основной переносчик кислорода в крови), от венозной, содержащей парамагнитный дезоксигемоглобин, — именно на этом основана фМРТ (функциональная МРТ), позволяющая отслеживать активность нейронов головного мозга.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Но, увы, такая замечательная методика, как МРТ, совершенно не приспособлена для изучения заполненных воздухом легких (даже если наполнить их водородом, сигнал от газообразной среды с низкой плотностью будет слишком слаб на фоне шумов). Да и мягкие ткани легких не слишком хорошо видны с помощью МРТ, поскольку они «пористые» и содержат мало водорода.

Можно ли обойти это ограничение? Можно, если использовать «намагниченный» газ — в этом случае средняя поляризация будет определяться не внешним полем, потому что все (или почти все) магнитные моменты будут ориентированы в одном направлении. И это вовсе не фантастика: в 1966 году французский физик Альфред Кастлер получил Нобелевскую премию с формулировкой «За открытие и разработку оптических методов исследования резонансов Герца в атомах». Он занимался вопросами оптической поляризации спиновых систем — то есть как раз «намагничиванием» газов (в частности, гелия-3) с помощью оптической накачки при резонансном поглощении фотонов с круговой поляризацией.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Дышите глубже

Пионерами использования поляризованных газов в медицине стала группа исследователей из Принстона и Нью-йоркского университета в Стони-Брук. В 1994 году ученые опубликовали в журнале Nature статью, в которой впервые было продемонстрировано изображение легких мыши, полученное с помощью МРТ.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Правда, МРТ не совсем стандартной — методика была основана на отклике не ядер водорода (протонов), а ядер ксенона-129. К тому же газ был не совсем обычным, а гиперполяризованным, то есть заранее «намагниченным». Так родился новый метод диагностики, который вскоре начали применять и в человеческой медицине.

Гиперполяризованный газ (обычно в смеси с кислородом) попадает в самые дальние закоулки легких, что дает возможность получить МРТ-снимок с разрешением на порядок выше лучших рентгеновских снимков. Можно даже построить детальную карту парциального давления кислорода в каждом участке легких и потом сделать заключение о качестве кровяного потока и диффузии кислорода в капиллярах. Эта методика позволяет изучить характер вентиляции легких у астматиков и контролировать процесс дыхания критических пациентов на уровне альвеол.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Достоинства МРТ с использованием гиперполяризованных газов этим не ограничиваются. Поскольку газ гиперполяризован, уровень полезного сигнала оказывается значительно выше (примерно в 10000 раз). Это означает, что отпадает необходимость в сверхсильных магнитных полях, и приводит к конструкции так называемых слабопольных МР-томографов — они дешевле, мобильнее и гораздо просторнее. В таких установках используются электромагниты, создающие поле порядка 0,005 Тл, что в сотни раз слабее стандартных МР-томографов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Маленькое препятствие

Хотя первые эксперименты в этой области проводились с гиперполяризованным ксеноном-129, вскоре его заменил гелий-3. Он безвреден, позволяет получать более четкие изображения, чем ксенон-129, имеет в три раза больший магнитный момент, что обусловливает более сильный сигнал в ЯМР. Кроме того, обогащение ксенона-129 из-за близости массы с другими изотопами ксенона — дорогой процесс, да и достижимая поляризация газа существенно ниже, чем у гелия-3. К тому же ксенон-129 обладает седативным эффектом.

Но если слабопольные томографы просты и дешевы, почему же метод МРТ с гиперполяризованным гелием не используется сейчас в каждой поликлинике? Есть одно препятствие. Но зато какое!

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Наследие холодной войны

Единственный способ получения гелия-3 — распад трития. Большая часть запасов 3He обязана своим происхождением распаду трития, произведенного во время ядерной гонки вооружений в период холодной войны. В США к 2003 году было накоплено примерно 260 000 л «сырого» (неочищенного) гелия-3, а к 2010 году осталось только 12000 л незадействованного газа. В связи с возрастанием спроса на этот дефицитный газ в 2007 году даже было восстановлено производство ограниченных количеств трития, и до 2015 года планируется дополнительно получать по 8000 л гелия-3 ежегодно. При этом годовой спрос на него уже сейчас составляет не менее 40 000 л (из них только 5% используется в медицине). В апреле 2010 года американский Комитет по науке и технологии США сделал вывод, что нехватка гелия-3 приведет к реальным негативным последствиям для многих областей. Даже ученые, работающие в ядерной отрасли США, испытывают трудности с приобретением гелия-3 из запасов государства.

Охлаждение смешиванием
widget-interest

Еще одна отрасль, которая не может обойтись без гелия-3 – это криогенная промышленность. Для достижения сверхнизких температур применяется т.н. рефрижератор растворения, который использует эффект растворения гелия-3 в гелии-4. При температуре ниже 0.87 К смесь разделяется на две фазы – богатую гелием-3 и гелием-4. Переход между этими фазами требует энергии, и это дает возможность охлаждения до очень низких температур — до 0,02 К. Простейшее такое устройство имеет достаточный запас гелия-3, который постепенно перемещается через границу раздела фаз в фазу, богатую гелием-4 с поглощением энергии. Когда запас гелия-3 закончится, устройство не сможет работать далее – оно «одноразовое».
Именно такой способ охлаждения, в частности, использовался в орбитальной обсерватории Planck Европейского космического агентства. В задачу «Планка» входила регистрация анизотропии реликтового излучения (с температурой около 2,7 К) с высоким разрешением с помощью 48 болометрических детекторов HFI (High Frequency Instrument), охлаждаемых до 0,1 К. До того, как запас гелия-3 в системе охлаждения был исчерпан, «Планк» успел сделать 5 снимков неба в микроволновом диапазоне.

Аукционная цена гелия-3 колеблется в районе $2000 за литр, причем никаких тенденций к снижению не наблюдается. Дефицит этого газа обусловлен тем, что основная часть гелия-3 используется для изготовления нейтронных детекторов, которые применяются в устройствах для обнаружения ядерных материалов. Такие детекторы регистрируют нейтроны по реакции (n, p) — захвату нейтрона и испусканию протона. А чтобы засечь попытки завоза ядерных материалов, таких детекторов требуется очень много — сотни тысяч штук. Именно по этой причине гелий-3 стал фантастически дорог и малодоступен для массовой медицины.

Впрочем, надежды есть. Правда, возлагаются они не на лунный гелий-3 (его добыча остается отдаленной перспективой), а на тритий, образующийся в тяжеловодных реакторах типа CANDU, которые эксплуатируются в Канаде, Аргентине, Румынии, Китае и Южной Корее.