Задушить и заморозить: Криогеника
Еще несколько лет назад Марк Рот (Mark Roth) и его команда показали принципиальную возможность перевести млекопитающих в режим анабиоза с помощью сероводорода, который блокирует получение клетками кислорода (ни в коем случае не пытайтесь повторить эксперимент на бабушке: сероводород весьма токсичен). Тогда ученые и заинтересовались тем механизмом, благодаря которому кислородное голодание (аноксия) стимулирует переход к анабиозу. И новые работы проливают свет на эту проблему.
На сей раз объектами экспериментов стали весьма популярные у биологов организмы — обычные пивоваренные дрожжи Saccharomyces cerevisiae и круглые черви Caenorhabditis elegans. Для начала представителей обоих видов ученые охлаждали в течение суток (для дрожжей — до 11−16О С, для зародышей червей — до 4О). Как и стоило ожидать, после этого более 99% особей погибло — в случае червей не смогло развиться до взрослой формы. Все понятно.
Но затем ученые рассмотрели влияние на этот процесс аноксии, предварительно помещая дрожжи и червей в атмосферу азота, безвредного и инертного, полностью лишенную кислорода. Затем — снова охлаждение на 24 часа. Оказалось, что около 2/3 дрожжевых клеток успешно перенесли холод и после возвращения к нормальной температуре принялись расти и размножаться. Среди червей выживших оказалось еще больше — более 97%. Очевидно, кислородное голодание каким-то образом помогает клеткам переносить переохлаждение. В случае дрожжей это выглядело так:
Исследуя механизмы этого явления, ученые во главе с Ротом пришли к интересному выводу: аноксия способствует сохранению жизненных функций после переохлаждения за счет почти полной остановки клеточного цикла.
Допустим, такого не произошло, и мы поместили C. elegans на холод. Жизненный цикл клеток нарушается: клетка в таких условиях неспособна делиться, но некоторые элементы продолжают работать, как ни в чем не бывало. Речь конкретно — о росте элементов «клеточного скелета», центросом, которые организуют белковый каркас микротрубочек. Иначе говоря, клетка готовит себя к предстоящему делению, образует для этого дополнительные центросомы и иные микроструктуры — но деление не начинается. Результат будет примерно таким, как если бы вы решили построить небоскреб в гараже: свободное место быстро закончится, и в какой-то момент гараж просто не выдержит.
Действительно, в течение первых же 4 часов на холоде у 43% зародышей круглых червей зафиксировано появление избыточного количества центросом, а к 24-му часу их количество превышает 90%. В клетке наступает настоящий хаос, который, как только клетка возвращается на комнатную температуру и все процессы в ней начинают проходить с нормальной скоростью, приводит к гибели.
Именно в этом моменте и «срабатывает» аноксия: недостаток кислорода ставит клетку на грань скорой гибели и заставляет быстро прекращать всякую деятельность, включая и синтез новых центросом и микротрубочек. Ну а когда температура становится нормальной, все процессы возобновляются без нарушения сбалансированности. Как написали авторы исследования, «вызванное аноксией состояние анабиоза (...) предохраняет клетку от возникновения при низких температурах непоправимых ошибок в жизненном цикле».
И хотя очевидно, что от этих исследований до реального использования криогенных технологий еще очень далеко, в мире уже функционируют настоящие «криогенные банки», где бережно сохраняются представители вымирающих видов. Читайте о них в заметке «Воскресение».
По материалам Fred Hutchinson Cancer Research Center и Cell Molecular Biology